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TIME-FREQUENCY AND TOPOGRAPHICAL ANALYSIS  
OF SIGNALS 

 
Modern methods of signal analysis are described. Namely, the estimation of time-frequency 
representation of signals by means of adaptive approximations and directed transfer function 
defined in the framework of multivariate autoregressive model are delineated and the applications 
of both methods are given.  

 
 

1. INTRODUCTION 
 

Technological progress in measurement techniques and increase of the 
computation power offered new possibilities in respect of application of physiological 
signals in medicine. In order to exploit in full information contained in these signals 
appropriate methods of analysis are required. Another challenge in respect of 
methodology of time series analysis is the rapid progress of the imaging methods such 
as CAT, PET or especially fMRI. The crucial advantage of signal processing in 
comparison with above mentioned techniques is the possibility of grasping the 
dynamic changes in the short time scale. In this respect time-frequency analysis is 
important. The topographical aspects offered by imaging techniques may be addressed 
by multichannel signal analysis, which can be also performed in time-frequency. In 
this paper two methods of signal analysis concerning time-frequency methods and 
multichannel topographical processing of time series will be described. The 
applications of the methods will concern mainly brain signals, however they can be 
used for different kind of signals, not necessarily biomedical signals. 

 
2. ADAPTIVE APPROXIMATIONS BY MATCHING PURSUIT. 

 
Matching Pursuit algorithm (MP) was introduced by Mallat and Zhang [23] and 

first applied to physiological signal processing by Blinowska and Durka [1]. In order 
to avoid the effects of dyadic dictionary structure of the original method a new 
algorithm based on stochastic dictionaries was introduced [5]. 

The MP method relies on adaptive decomposition of the signal into waveforms 
from a large and redundant dictionary of functions. A dictionary of basic waveforms 
can be generated e.g. by scaling, translating and, unlike in wavelet transform, 
modulating window function g(t): 
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s>0 - scale, ξ - frequency modulation, u - translation.   

Index I = (ξ, s, u) describes the set of parameters. The dictionaries of windowed 
Fourier transform and wavelet transform can be derived as subsets of this dictionary, 
defined by certain restrictions on the choice of parameters. In case of the windowed 
Fourier transform, the scale s is constant - equal to the window length - and the 
parameters ξ and u are uniformly sampled. In the case of WT the frequency 
modulation is limited by the restriction on the frequency 
parameter ξ = ξ0/s, ξ0 = const. 

Finding an optimal approximation of signal by functions from such a large 
family is a NP-hard problem (computationally intractable). Therefore a suboptimal 
iterative procedure is applied. In the first step of the iterative procedure we choose the 
vector g

I0
 which gives the largest product with the signal f(t). The iterative procedure 

is repeated; in this way the signal f is decomposed into a sum of time-frequency 
waveforms, chosen to match optimally the signal’s residues Rn [1], [2]: 
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The point at which we should stop the iterations, or equivalently, the number 

of waveforms in expansion can be chosen individually for each signal based upon 
mathematical criteria or set arbitrary e.g. as a percentage of energy accounted for. 
The highest time-frequency resolution is obtained for functions from Gabor family. 
The waveforms, or atoms obtained in decomposition procedure are described in terms 
o their frequency, time occurrence, time span and energy. By adding the Wigner 
distributions of atoms time-frequency (TF) representation can be easily constructed. 
Comparison of the TF distributions obtained by different methods revealed that MP 
provides the highest TF resolution [13]. 

The method of adaptive approximations provides the parametrisation of all data 
structures, then one can extract from that large pool of structures the ones belonging 
to the particular groups defined by clinical criteria e.g.  sleep spindles were defined as 
waveforms of frequency 11 – 15 Hz and time span 0.5 – 2.5 sec, amplitude > 15 µV .  
 

3. APPLICATION OF MP METHOD 
  
 In the sleep studies MP approach made possible to distinguish two kinds of 

spindles, which also differed in topographical features [24].  Temporal evolution of 
different statistical properties of spindles and SWA was studied; among others the 
inverse relation in the density of occurrence of SWA and sleep spindles for stage 2 
sleep was found. MP procedure allowed for detection of arousals and distinction of 
deep sleep stages 3 and 4 based directly upon the classical Rechtshafen & Kales 
criteria [21]. MP describes in one framework rhythmic and transient structures of the 
signal in terms compatible with visual analysis - in this way clinical knowledge can be 
quantified and integrated in the automatic system of clinical diagnosis [21].  

High resolution of MP allowed for elucidation of the role of different closely 
spaced rhythms in the voluntary movement experiments [10]. For the first time 
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phenomenon of ERS/ERD (event related desynchronisation/synchronisation) was 
shown in the whole time-frequency space, not only in the selected bands. Two 
components of  µ rhyhms of different dynamic characteristics were found. 

Other applications of MP algorithm concerned event related responses to weak 
vibrational stimuli [23], and investigation of the evolution of epileptic seizure [9].  
In the last experiment MP method allowed for analysis of entire seizures without 
requiring segmentation or restrictions to stationary epochs. This made possible clear 
distinction of the periods of different dynamics during seizure development, which 
correlated with particular kind of clinical picture of illness with implications for 
therapy. 

Almost a decade of MP applications in analysis of EEG suggests that the 
method can unify most univariate computational approaches to evaluation of this 
signal, offering at the same time compatibility with its visual analysis. 

The application of MP algorithm to otoacustic emissions (OAE) brought a 
substantial progress in the understanding of its generation mechanisms. In particular 
the role of resonance modes in the operation of  inner ear was elucidated [13], [15] 
and different origin of the short lasting and long lasting components of emissions was  
found. The method also proved it usefulness for identification of hearing disturbances 
[14]. 

 
4. MULTIVARIATE AR MODEL AND DIRECTED TRANSFER 

FUNCTION 
 
For a multichannel process the information derived from the set of signals is 

quantitatively different from the information obtained from each signal treated 
separately. The so called cross -measures describing relation between two channels 
are widely known. However the information which can be derived from whole set of 
signals is again different from the bivariate measures. The multivariate AR model 
allows for treatment of signals simultaneously, not pair-wise. 

For a k-channel signal a vector of k EEG values at every time point t can be 
represented as X(t)=(X1(t), X2(t), ..., Xk(t). The MVAR model can be expressed as:  
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where X(t) is the data vector in the time t, E(t) is the vector of white noise values, A(i) 
are the model coefficients and p is the model order. After transforming the model 
equation to a frequency domain we get [4], [7]: 
 

)()()()()( 1 fffff EHEAX == −  (4) 
 
The H(f) matrix is called a transfer matrix of the system. From the H(f) power spectra 
and coherences may be found [4], [7]. 
In the literature mainly ordinary coherences  defined as normalized cross-spectral 
elements are used. However coherence between two channels may come from the 
influence of the third channel. In order to distinguish direct from indirect relations 
partial coherence was introduced. It is nonzero only when the given relation between 
channels is direct. If a signal in a given channel can be explained by a linear 
combination of some other signals of the set, the partial coherence between them will 
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be low [7]. Multiple coherence describes the amount of common component in the 
given channel and the rest of the signals set.  
Parametric analysis of time series provides a natural tool to describe causal relations. 
When considering Eq.4 it is easy to see that all the relations between data channels are 
contained in the transfer matrix H. We have introduced [16] Directed Transfer 
Function (DTF) which describes causal influence of channel j on channel i at 
frequency f in the form: 

∑
=

= k

m
im

ij

ij

fH

fH
f

1

2

2

2

)(

)(
)(γ  (5) 

The above equation defines a normalized version of DTF, which takes values from 0 
to 1 producing a ratio between the inflow from channel j to channel i to all the inflows 
to channel i. Sometimes it is easier to abandon the normalization property and use 
simply values of elements of transfer matrix Hij(f) which are related to causal 
connection strength [18]. 
 In [18] it was shown that the non-normalized DTF could be interpreted as 
Granger causality in a multichannel sense. Granger causality [12] was defined for two 
channels: we say that channel X(1) causes X(2) in a Granger sense, if the prediction 
error of X(2) is reduced by inclusion of channel X(1), in another words, future of 
channel X(2) may be predicted by means of  the past samples not only from channel 
X(2) but also X(1). 

If more than two  channels are mutually dependent it is of outmost importance 
to include all the channels of the process in the computational model. It was 
demonstrated by means of simulations and experimental results that calculation of 
causal relations by means of bivariate measures leads to erroneous results [3], [20], 
contrary to DTF which provides correct pattern of causal dependencies. The 
simulation studies revealed also that DTF is extremely robust to noise, even several 
times higher than the signal. 

In order to fit a linear model to a dataset the data segment must be long enough 
to fulfill a requirement that the number of fitted parameters must not exceed the 
number of the data points. In practice, we need several times more data points than the 
model parameters. The number of MVAR parameters is: pk2, where p is the model 
order and k is a number of channels, whereas the number of data points is given by kn, 
where n is a data length in each channel. When we are interested in the dynamical 
evolution of the signals the data window cannot be long. We may overcome this 
difficulty when many realizations of the same stochastic process are available. In the 
procedure of calculating the model coefficients we apply ensemble averaging over 
realisations, which increases our data m times where m is number of realisations. In 
consequence we may use short data segments and by application of sliding window 
technique compute Short-time Directed Transfer Function - SDTF(f,t) as a function of 
time, not only frequency. The errors of SDTF are estimated by means of a bootstrap 
method [6], [18]. 

DTF can be used as well for estimation of causality in the point processes e.g. 
in the investigation of the spike trains and their connection with local field potentials. 
This feature was demonstrated by simulations and experimental applications [18]. 

 
5. APPLICATION OF DTF AND SDTF 

 
One of the first applications of the DTF method concerned the localisation of 



Katarzyna. J. BLINOWSKA / XI Conference "Medical Informatics & Technologies" - 2006 I-20

epileptic foci [8]. The DTF method allowed for accurate topographical  determination 
of  seizure onset and propagation. As the seizure activity spreads regionally, the DTF 
method can determine whether the initial focus continues to be the source of epileptic 
activity or whether other more remote areas become secondary generators. 

The DTF method was also applied to the estimation of information transfer during 
locomotion in experimental animals  with chronically implanted electrodes [19]. The 
results obtained by means of DTF together with evidence from partial coherences, 
have shown that involved structures are connected with a bi-directional links, which 
are activated depending on the situation – i.e.: difficulty of the motor task and the 
phase of movement.  

DTF method was a basic tool in the topographic analysis of EEG activity during 
overnight sleep [17]. In the study signals from 21 electrodes (10-20 standard) were 
simultaneously evaluated by means of the MVAR model. The results indicted that the 
EEG activity in the awake state (eyes closed) propagates mainly from the posterior 
areas. During sleep sources of EEG activity shift toward the frontal areas.  

SDTF found application in the study of voluntary movements and their 
imagination. In the series of experiments the finger movements, imagination of hand 
movements and both movement and imagination were measured [10], [11], [4]. The 
results revealed similarities in propagation especially in alpha and beta bands. In the 
gamma band in case of real movement we observed a burst of activity from the motor 
areas connected with the finger movement followed by the burst from the frontal 
areas, in case of imagination the alternating flows from the involved structures were 
observed, especially they came from primary and supplementary motor areas. 
 

 
 
 
 
Fig.1. Snapshots of the movie representing propagation of EEG signal during finger movement (left) 
and imagination of the task (right). From top to the bottom snapshots taken at 0.3s, 1.1s, 1.4s after the 
cue. 
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6. CONCLUSIONS. 

 
Both methods described in this paper are complementary — the MP based 

analysis gives very detailed information about amplitude distribution in a 
time-frequency domain, while SDTF has lower resolution in time-frequency, but it 
brings in the information about causal relations between channels. The problem of the 
determination of directionality and finding causal relationships between time series is 
at present at the center of interest on many diverse fields e.g. neuroscience, 
geophysics, economy, sociology. The information about causality is coded in the 
phases between the channels of a process, however correct causal relationships and 
directions of signal propagation can only be found when all the interacting channels 
are evaluated simultaneously. The multichannel data contain rich information  which 
can hardly be accessed by other methods. By the application of  appropriate methods 
of time series analysis this information can be extracted providing us a knowledge 
about the underlying processes. 
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