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TIME-FREQUENCY AND TOPOGRAPHICAL ANALYSIS
OF SIGNALS

Modern methods of signal analysis are describedndéllg the estimation of time-frequency
representation of signals by means of adaptive ceqapiations and directed transfer function
defined in the framework of multivariate autoregies model are delineated and the applications
of both methods are given.

1. INTRODUCTION

Technological progress in measurement techniqued mtrease of the
computation power offered new possibilities in expof application of physiological
signals in medicine. In order to exploit in fulf@mmation contained in these signals
appropriate methods of analysis are required. Aarotthallenge in respect of
methodology of time series analysis is the rapaypgss of the imaging methods such
as CAT, PET or especially fMRI. The crucial advaetaof signal processing in
comparison with above mentioned techniques is tbssipility of grasping the
dynamic changes in the short time scale. In thépeet time-frequency analysis is
important. The topographical aspects offered bygimgatechniques may be addressed
by multichannel signal analysis, which can be gedormed in time-frequency. In
this paper two methods of signal analysis concegritime-frequency methods and
multichannel topographical processing of time <eriwill be described. The
applications of the methods will concern mainlyibrsignals, however they can be
used for different kind of signals, not necessdritynedical signals.

2. ADAPTIVE APPROXIMATIONS BY MATCHING PURSUIT.

Matching Pursuit algorithm (MP) was introduced bwlMt and Zhang [23] and
first applied to physiological signal processingBiynowska and Durka [1]. In order
to avoid the effects of dyadic dictionary structwk the original method a new
algorithm based on stochastic dictionaries wasthtced [5].

The MP method relies on adaptive decompositionhef gignal into waveforms
from a large and redundant dictionary of functioAdictionary of basic waveforms
can be generated e.g. by scaling, translating amtdlke in wavelet transform,
modulating window functiong(t):
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g, (t) =%g[t%uje“‘* (1)

s>0 - scale§ - frequency modulationy - translation.
Index | = (£, s, u) describes the set of parameters. The dictionasfewindowed
Fourier transform and wavelet transform can bevedrias subsets of this dictionary,
defined by certain restrictions on the choice afap#eters. In case of the windowed
Fourier transform, the scakeis constant - equal to the window length - and the
parameters and u are uniformly sampled. In the case of WT the fery
modulation 5 limited by the restriction on the duoency
parametet = &y/s, &y = const.

Finding an optimal approximation of signal by fuoos from such a large
family is a NP-hard problem (computationally inteule). Therefore a suboptimal
iterative procedure is applied. In the first stéphe iterative procedure we choose the
vector g, which gives the largest product with the sigi§l The iterative procedure

is repeated; in this way the sigrfais decomposed into a sum of time-frequency
waveforms, chosen to match optimally the signasiduesR'[1], [2]:

f:i<R”f,g|n>g,n + R f 2)

n=0

The point at which we should stop the iteratiorrsequivalently, the number
of waveforms in expansion can be chosen indivigudt each signal based upon
mathematical criteria or set arbitrary e.g. asragr@age of energy accounted for.

The highest time-frequency resolution is obtainedféinctions from Gabor family.
The waveforms, or atoms obtained in decompositrocgrure are described in terms
o their frequency, time occurrence, time span amergy. By adding the Wigner
distributions of atoms time-frequency (TF) repréagan can be easily constructed.
Comparison of the TF distributions obtained by afi#éiht methods revealed that MP
provides the highest TF resolution [13].

The method of adaptive approximations providespammetrisation of all data
structures, then one can extract from that largd pbstructures the ones belonging
to the particular groups defined by clinical cridee.g. sleep spindles were defined as
waveforms of frequency 11 — 15 Hz and time spanr-®% sec, amplitude > 15/ .

3. APPLICATION OF MP METHOD

In the sleep studies MP approach made possibl@istinguish two kinds of
spindles, which also differed in topographical teaes [24]. Temporal evolution of
different statistical properties of spindles and AWas studied; among others the
inverse relation in the density of occurrence of S@hd sleep spindles for stage 2
sleep was found. MP procedure allowed for deteatibarousals and distinction of
deep sleep stages 3 and 4 based directly uponldksical Rechtshafen & Kales
criteria [21]. MP describes in one framework rhytbrand transient structures of the
signal in terms compatible with visual analysia this way clinical knowledge can be
quantified and integrated in the automatic systéwlioical diagnosis [21].

High resolution of MP allowed for elucidation ofettrole of different closely
spaced rhythms in the voluntary movement experimmg¢h@]. For the first time
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phenomenon of ERS/ERD (event related desynchromigaynchronisation) was
shown in the whole time-frequency space, not omlythe selected bands. Two
components ofu rhyhms of different dynamic characteristics wererfd.

Other applications of MP algorithm concerned evefdted responses to weak
vibrational stimuli [23], and investigation of theyolution of epileptic seizure [9].
In the last experiment MP method allowed for analysf entire seizures without
requiring segmentation or restrictions to statigngpochs. This made possible clear
distinction of the periods of different dynamicsridg seizure development, which
correlated with particular kind of clinical picturaf illness with implications for
therapy.

Almost a decade of MP applications in analysis &GEsuggests that the
method can unify most univariate computational apphes to evaluation of this
signal, offering at the same time compatibilitywits visual analysis.

The application of MP algorithm to otoacustic enuss (OAE) brought a
substantial progress in the understanding of iteeggion mechanisms. In particular
the role of resonance modes in the operation aferiear was elucidated [13], [15]
and different origin of the short lasting and Idagting components of emissions was
found. The method also proved it usefulness fontifleation of hearing disturbances
[14].

4. MULTIVARIATE AR MODEL AND DIRECTED TRANSFER
FUNCTION

For a multichannel process the information derifredh the set of signals is
quantitatively different from the information ohtad from each signal treated
separately. The so called cross -measures desgniblation between two channels
are widely known. However the information which danderived from whole set of
signals is again different from the bivariate measuThe multivariate AR model
allows for treatment of signals simultaneously, pait-wise.

For ak-channel signal a vector & EEG values at every time poihtan be
represented as(t)=(Xq(t), Xza(t), ..., Xk(t). The MVAR model can be expressed as:

X(@) = Y AGX( - ) +EQ) @

whereX(t) is the data vector in the timgeE(t) is the vector of white noise values(i)
are the model coefficients anqis the model order. After transforming the model
equation to a frequency domain we get [4], [7]:

X(f)=AT(F)E(f) =H(f)E(f) (4)

TheH(f) matrix is called a transfer matrix of the systémom theH (f) power spectra
and coherences may be found [4], [7].

In the literature mainly ordinary coherences dadimms normalized cross-spectral
elements are used. However coherence between tamnels may come from the
influence of the third channel. In order to distirglh direct from indirect relations
partial coherence was introduced. It is nhonzery artien the given relation between
channels is direct. If a signal in a given chanoah be explained by a linear
combination of some other signals of the set, tmtigd coherence between them will
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be low [7]. Multiple coherence describes the amatommon component in the
given channel and the rest of the signals set.
Parametric analysis of time series provides a ahtaol to describe causal relations.
When considering Eq.4 it is easy to see that alréhations between data channels are
contained in the transfer matrid. We have introduced [16] Directed Transfer
Function (DTF) which describes causal influence cbinnelj on channeli at
frequencyf in the form:
H.(f)

y”?(f) :JL)‘Z

m=1

The above equation defines a normalized versiddTd¥, which takes values from 0
to 1 producing a ratio between the inflow from amelj to channel to all the inflows
to channeli. Sometimes it is easier to abandon the normatizgbroperty and use
simply values of elements of transfer mathi(f) which are related to causal
connection strength [18].

In [18] it was shown that the non-normalized DTFRuldobe interpreted as
Granger causality in a multichannel sense. Graocgesality [12] was defined for two
channels: we say that chann€ll) causesX(2) in a Granger sense, if the prediction
error of X(2) is reduced by inclusion of chann¥(1), in another words, future of
channelX(2) may be predicted by means of the past samplesmy from channel
X(2) but alsoX(1).

If more than two channels are mutually dependeistof outmost importance
to include all the channels of the process in tbenmutational model. It was
demonstrated by means of simulations and experaheesults that calculation of
causal relations by means of bivariate measures l&aerroneous results [3], [20],
contrary to DTF which provides correct pattern ciugsal dependencies. The
simulation studies revealed also that DTF is exélgnmobust to noise, even several
times higher than the signal.

In order to fit a linear model to a dataset theadagment must be long enough
to fulfill a requirement that the number of fittgzhrameters must not exceed the
number of the data points. In practice, we neeérs¢times more data points than the
model parameters. The number of MVAR parameterpkis: wherep is the model
order and is a number of channels, whereas the number afgants is given bin,
wheren is a data length in each channel. When we areestied in the dynamical
evolution of the signals the data window cannotldoey. We may overcome this
difficulty when many realizations of the same stistic process are available. In the
procedure of calculating the model coefficients ayply ensemble averaging over
realisations, which increases our datdimes wheran is number of realisations. In
consequence we may use short data segments ampligation of sliding window
technique compute Short-time Directed Transfer Banc SDTF(f,t) as a function of
time, not only frequency. The errors of SDTF aréneated by means of a bootstrap
method [6], [18].

DTF can be used as well for estimation of causdaiitthe point processes e.g.
in the investigation of the spike trains and tleginnection with local field potentials.
This feature was demonstrated by simulations apéraxental applications [18].

()

5. APPLICATION OF DTF AND SDTF

One of the first applications of the DTF method cemmed the localisation of
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epileptic foci [8]. The DTF method allowed for acate topographical determination
of seizure onset and propagation. As the seiztireity spreads regionally, the DTF
method can determine whether the initial focus iomeis to be the source of epileptic
activity or whether other more remote areas becegoendary generators.

The DTF method was also applied to the estimatfanformation transfer during
locomotion in experimental animals with chronigathplanted electrodes [19]. The
results obtained by means of DTF together with @we from partial coherences,
have shown that involved structures are conneciéd avbi-directional links, which
are activated depending on the situation — i.dficdity of the motor task and the
phase of movement.

DTF method was a basic tool in the topographicyamalof EEG activity during
overnight sleep [17]. In the study signals from é2éctrodes (10-20 standard) were
simultaneously evaluated by means of the MVAR motleé results indicted that the
EEG activity in the awake state (eyes closed) pyaps mainly from the posterior
areas. During sleep sources of EEG activity shiktard the frontal areas.

SDTF found application in the study of voluntary vements and their
imagination. In the series of experiments the fingevements, imagination of hand
movements and both movement and imagination wewsuned [10], [11], [4]. The
results revealed similarities in propagation esgfcin alpha and beta bands. In the
gamma band in case of real movement we observedsadf activity from the motor
areas connected with the finger movement followgdth®e burst from the frontal
areas, in case of imagination the alternating flénes the involved structures were
observed, especially they came from primary anglempentary motor areas.

" cue

cue

cue

Fig.1. Snapshots of the movie representing propagaf EEG signal during finger movement (left)
and imagination of the task (right). From top te tottom snapshots taken at 0.3s, 1.1s, 1.4sth#ter
cue.
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6. CONCLUSIONS.

Both methods described in this paper are compleangnt- the MP based

analysis gives very detailed information about amg@é distribution in a
time-frequency domain, while SDTF has lower resotutin time-frequency, but it
brings in the information about causal relationsMeen channels. The problem of the
determination of directionality and finding causalationships between time series is
at present at the center of interest on many divdislds e.g. neuroscience,
geophysics, economy, sociology. The informationutbrausality is coded in the
phases between the channels of a process, howeweciccausal relationships and
directions of signal propagation can only be fowiten all the interacting channels
are evaluated simultaneously. The multichannel datdain rich information which
can hardly be accessed by other methods. By thiecagppn of appropriate methods
of time series analysis this information can beasted providing us a knowledge
about the underlying processes.
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