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pattern recognition, combining classifiers,
protein secondary structure prediction

Tomasz WOLOSZYSKI, Marek KURZYNSKI

ON A NEW METHOD OF COMBINING CLASSIFIERSAPPLIED TO THE
PROTEIN SECONDARY STRUCTURE PREDICTION

We introduce common framework for fusion methodagislynamic weights in decision making process.
Both weighted average combiners with dynamic waigthd combiners which dynamically estimate local
competence are considered. Few algorithms presanthe literature are shown in accordance with model.
In addition we propose two new methods for comlgrétassifiers. The problem of protein secondarycstire
prediction was selected as a benchmark test. Erpats were carried out on previously prepared datfsnon-
homologous proteins for fusion algorithms comparis®he results have proved that developed framework
generalises dynamic weighting approaches and sloeufdrther investigated.

1. INTRODUCTION

Information fusion has been investigated with madtention in recent years. The idea of
using ensemble of classifiers instead of singlemoged to be useful, assuring higher classificatio
accuracies in many pattern recognition problemsgydneral, combining methods may be divided
into two groups: classifier fusion and classifi&lestion. The first one assumes that the final
decision should be made using all classifiers astpthe latter chooses single classifier with the
highest local competence and relies only on itspsup. In section 2 we present common
framework for both weighted average combiners vdyimamic weights (WAD) and combiners
which estimate local competence dynamically (LCE)]] Described approaches make sense in
problems where similarity between objects can beasued. Although continuous character of
input features seems to be a good criterion facsielg a specific task it may be very interesting t
examine performance of introduced fusion methodsvehere. The protein secondary structure
prediction, being one of the most important chaksnin computational biology provides us with
such testing data. Two main differences betweerssidal pattern recognition problem and
predicting three-dimensional conformation of a pmetmaking the task more demanding are:
variable length of input object and computatiomdistance between two proteins using evolutionary
matrix. In section 3 we describe the protein datasel discuss the results of benchmark tests
performed on proposed combining algorithms and faher fusion methods for comparison.
Conclusions for presented combiners are givenvedtiels.
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2. THEORETICAL STUDY

2.1. WAD AND LCE COMBINERS

We are given the ensemble Wfbase classifiers, each of them producing a rovtovesith
supports foM classes. All of the support vectors form a denigimfile matrixDP(x) [11] for any input
objectx:

dl,l(x) dl,M (X)
DP(x) = : : : (1)
dy,() - dyu(®

whered, . (X) denotes support ofth classifier fom-th class for object. Without loss of generality we
can restrictd, . (x )within the interval [0,1] and additionally,.d, »(X) =1. We assume that weights
Wopm(X) (n=212,...,N, m=12,...,M ) used both by WAD and LCE combiners in fusion pchee
depend on the input objecand form a matrixV(x .)For a WAD combiner final support for classs
given by weighted sum of supports of base classifigz.

N
Hm(X) = 2 W m(X) dym(X), 2
n=1

whereas in the case of LCE this support is equhiesupport of base classifier with the greatestl l(at
point X) competence. As a competence measure we adoparimef classifier weights, which leads to
the following final support of LCE combiner:
M M
HUm(X) =dpm(X),  where > w;(x) = mkaxz W j (X). - (3)
j=1 j=1

The class which gets the highest final supporsstgyaed to the input object.

2.2. FRAMEWORK FOR COMBINERS USING DYNAMIC WEIGHTS

Let us assume that the feature space is dividedKintisjoint regionsR, . Suppose thaE™ and
E, are fusion methods with best possible static mateights for whole feature space and for region
respectively. The following inequality holds:
[ R(EJR)2P.(E'R), (4)
k=1,...,K
where P, (E|Rk) denotes probability of correct classificationéoisembld= under condition that objext
lies in regionR, . It is clear that the feature space division mesius with better classification accuracy:
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If we split feature space into infinite number egions so that each of them shrinks to a single

point we get:

P, (fusion) = " P, (Ey
k

P.(fusion) = jPC(E;|x)f(x)dx,

ROP(R) = P.(E").

()

(6)

where the term under integral takes value fromsibie{0,1}. Therefore in order to maximize the
probability (6) it is sufficient to maximize justis term for any giver:

maxP, (fusion) = mEaxPc(E;|x).

()

This approach may be used only with objegtdor which class memberships are known. We
denote such learning set & ={x| ,il} and its cardinality by.. For any other object we suggest
finding the weights matrixV(x py following equation:

where g(x, X, )is a function dependent on the distad¢s, X,

W0 =Y 906 X W(K),

befween objectsand x .

Weights matrix W(x)

Distance dependent

(=i function
' g(x%)
CC1 (Distance-based 1
w,, (x)=d,, (X 9(x.x) =
i) LX) =d, (%) )= 3000
CC2 (Potential 1 if d_  (x)=maxd_ (X
( Oen @ w,, (%)= n,r.( ) i m( ) g(x,x) = : 2
functions) -1 otherwise 1+ (d(x, %))
_ dn,r (XI) if dn,r (XI) = mjaan,j (XI) (X % ) _ 1
ccs3 Wy (%) = —mjaxdn'j(xl) otherwise 9, 16% S d(xx)
_ dn,r (XI) if dn,r (XI) = mjaan,j (XI) (X % ) _ 1
cca War (%) = —mjaxdn'j(xl) otherwise 9:%% 14+ (d(x,%))?
_ dn,m(xl) If dn,r (XI) = m,aan,j (XI) _ 1
ces Vo (%) = {O otherwise ] % %)= d(x,x)
dn m(Xi) If dnr (XI) = maan j (XI) 1
_Jon : oo XX)=—————
- o) {o othervise ) o)

Table 1. Tested algorithms presented in accordaitiegproposed framework

(@)
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The way of creating matricd&/(x, as well as defining functiog(x,x, are parameters of introduced

algorithm. We have adapted two LCE methods proposdik literature: distance-baskdan [4] and
potential functions [11] as well as two new onasgipresented model. All of them were tested during
experiments and are shown in Table 1.

3. APPLICATION TO PROTEIN SECONDARY STRUCTURE PREIIION

3.1. INTRODUCTION TO PROTEIN PREDICTION

The problem of secondary structure prediction fgivan protein is of great importance in the field
of drug designing. Current measuring methods phogithree-dimensional protein structures i.e. X-ray
crystallography using diffraction images or NMR aeesed on expensive and long processes, therefore
computational techniques are used to overcome tlismdvantages. In general the prediction apprisach
very similar to classical pattern recognition modlée are given the input objecbeing the sequence of
letters, so called primary structure. Each letterodes one amino acid and takes one of 20 different
values. The sequence length (number of residutge ibhain) depends on the protein. The classiicati
problem is defined as follows: for each amino agithe given sequence predict their conformational
state which can be eithethelix (encoded by letter Hj;strand (E) or other (C).

3.2. EXPERIMENTS

We have derived non-homologous protein dataset P@BSELECT [7] with 25% similarity
threshold. The total number of 583 proteins witB2Bresidues were selected for the experiment. Only
proteins with at most 150 amino acids in the secpievere taken into account. PDBFINDER?2 [9] was
used for finding DSSP [8] predictions (class merships). We have reduced number of classes on
DSSP output to previously described three (H, E, T®e ensemble of base classifiers is built of 3
different methods: GORIV [2] (based on informatibeory), HNN [5] (hierarchical neural network) and
SOPMA [3] (based on multiple alignments).

Qq Qe Qc Q, | sov, | OV | OV, | S0V,

GORIV 59.26 | 60.78| 65.83 60.43 67.26 67.37 71/62 72.02

HNN 68.09 | 56.45| 74.49 66.66 73.95 6066 7923 74.77

SOPMA 72.85| 64.35| 68.04 68783 78.23 71.12 76|27 79.07

MAX 65.34 | 59.87| 7232 6553 7215 6573 78/50 76.10
MEAN 65.53 | 59.78| 74.39 66.66 72594 6571 78|86 76.72
VOTE 68.65| 60.41| 75.19 68.60 75.06 6584 80/70 74.36

ORACLE | 73.06| 68.10| 77.99 8230 86.63 80.75 91/24 89.40

Table 2. Prediction accuracies for base class#ietsselected combiners (in %)
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The results were gathered using NPS@ server [1h B4 classifiers gives three degrees of
support for every amino acid in the chain. The oistpvere processed using modified softmax method in
order to estimate posterior probabilities. Theatise between a pair of amino acids from different
proteins was computed using BLOSUMS3O0 [6] scoringrixavith window size of 11. Ten most similar
amino acids were taken into account during comioumtarocess. The classical accuracy rate givehdoy t
quotient of properly classified amino acids totheial number is denoted Iy, for the whole class set

or by Q,,, Q¢ and Q. for a-helix, B-strand and other respectively. Although this kaidneasure is

very common in pattern recognition problems it rhbaymisleading when dealing with protein secondary
structure prediction. Segment overlap rate SOV {123 developed specially for this task and is much
more competent.

QH QE QC Q3 OV, SOVe SOV S0V,

CC1 (Distance-based k-nn) | 65.84 | 58.12| 74.60 66.06 73.33 64.96 8064 76.44

CC2 (Potential functions) 68.18 | 60.55| 74.31 67.79 76.31 68.18 82|09 78.45

CC3 67.84 | 60.30| 74.5Q 676y 76.09 67.80 8201 78.16
CC4 67.83 | 60.29| 74.5Q 67.6Y 76.7 67.82 82|02 78.15
CC5 65.17 | 56.17| 78.1Q 66.81 73.40 6499 8239 76.82
CC6 65.18 | 56.19| 78.10 66.80 73.37 65.04 82/39 76.79

Table 3. Prediction accuracies for proposed class#éind selected combiners (in %)

Prediction accuracies for base classifiers anglsirombining methods such as max, mean and
majority voting [10] for the whole dataset are prgsd in Table 2. First of all it should be stateat all
base classifiers give quite distinct predictiondl SOPMA method seems to be the best one among
others. Combiners such as max and mean are alesg/sitcurate than the best single classifier but in
overall they are superior to both GORIV and HNN jdvity voting combiner gets the highest score for
predicting class C and is almost as good as SOPywithm for total conformational state prediction.
The results given for oracle classifier are vetgriesting and meaningful. It is on average at l@@st
percentage points better than any of other metfdus proves that there is much space for improveme
for combining algorithms. Testing methods descrilmedection 2 was carried out with ten-fold cross
validation. Results are shown in Table 3. The C@&loh approach is inferior to all other combiners.
This fact may be caused by the way of computingylsimatrix where no penalty policy was applied.
Similar situation can be seen for CC5 and CC6 gligos despite the best accuracies for class C. The
latter two were tested using WAD final supports e best three combiners are CC2, CC3 and CC4.
Each of them is better than majority voting methodll classes, but surprisingly the overall scames
lower. Nonetheless they assure good performancalbwere examined using LCE approach (2), which
Is worth mentioning.
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4. CONLUSIONS

We have introduced a framework for combining cfassi based on dynamic weights. Two
parameters in our model: distance dependent funato weights matrix allow us to modify the fusion
process in many ways. The generalisation abilityeseloped algorithm was proven by adapting exjstin
LCE combiners in accordance to our approach. Futanestigation should be focused on selecting the
most proper parameters for a given problem. Imprave of method proposed for computing the weight
matrix for particular input objestwould also be desirable. The accuracies gainedglexperiments on
protein secondary structure prediction are sat@fiadn comparison to other types of combiners.
However it should be stated that the process gftaxdpprotein dataset to the pattern recognitioleho
could be done in different manners providing evettelo performance of introduced fusion methods.
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