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CABRS – CELLULAR AUTOMATON BASED MRI BRAIN SEGMENTA TION 

In this article new approach to the MRI brain segmentation is presented. It is based on the Cellular 
Automaton (CA). The method is truly interactive, and produces very good results comparable to those achieved 
by Random Walker or Graph Cut algorithms. It can be used for CT and MRI images, and is accurate for various 
types of tissues [2]. Discussed here version of the algorithm is developed especially for the purpose of the MRI 
brain segmentation. This method is still in the phase of development and therefore can be improved, thus final 
version of the algorithm can differ from the one presented here. The method is extensible, allowing simple 
modification of the algorithm for a specific task. As we will also see it is very accurate for two-dimensional 
medical images. Three-dimensional cases require some unsophisticated data post processing [5], or making some 
modifications in the manner in which the automaton grows into the third dimension from the two-dimensional 
layer. 

1. INTRODUCTION 

The method is based on cellular automata, firstly introduced by Ulam and von Neumann in 
1966 [7]. It can be used to solve difficult segmentation problems, furthermore it is multilabel – 
segments many object simultaneously (computation time does not depend on the number of labels). 
It is interactive: requires the user to provide starting points for the algorithm (not many seeds are 
needed and their entering is not laborious), but in turn enables him to observe the segmentation 
process and make modifications in it. Interactivity is very important for physicians who like to have 
some (often large) influence on medical images processing. Furthermore, a radiologist will be able 
to place seed points very accurately and in characteristic places of a specific organ (the reason why 
will be explained later), and will check the correctness of segmentation afterwards.  

2. CELLULAR AUTOMATON 

A cellular automaton is a discrete model studied in the computability theory, mathematics, 
and theoretical biology [4]. It consists of an infinite, regular grid of cells, each in one of a finite 
number of states. The grid can be in any finite number of dimensions. Time is also discrete, and the 
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state of a cell at time t is a function of the states of a finite number of cells (neighbourhood) at time 
t-1. These neighbours are a selection of cells relative to the specified cell and do not change. 
Though the cell itself may be in its neighbourhood, it is not usually considered a neighbour. Every 
cell has the same rule for updating, based on the values in this neighbourhood. Each time the rules 
are applied to the whole grid a new generation is produced. 

Formally, cellular automata is triplet 

A = (S, N, δ),      (1) 

where  
S – not empty states set 
N – neighbouring system 
δ – transition function describes way of calculation cell state in time t+1 basing on state of its 

neighbours in time t. 
State of cell p, on the other hand also consists of three values: 

Sp = (lp , θp, Ip),      (2) 

where 
lp – current cell label 
θp – cell strength, being real number and we may assume that   
Ip – is intensity (value) of pixel (or voxel) in image corresponding to cell p. 

3. APPLICATION OF CELLULAR AUTOMATON FOR SEGMENTATION 

In our case cellular automaton is a sheet of graph paper (for two dimensional images), where 
each square is a cell, and each cell corresponds to a pixel of image being segmented. In three 
dimensional cases we would have a set of two dimensional sheets placed one on another. Because 
this segmentation algorithm is multi-label each cell state consists of one of the labels of areas we are 
segmenting plus neutral territory label (L possible labels). During the evolution of automaton other 
cells slowly conquer neutral territory. Obviously, each cell has eight neighbours on the same plane, 
and if we are dealing with a three dimensional case, there are also eighteen ones on the planes above 
and beneath. In a more general instance we may use, for example, von Neumann’s: 
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or  Moor’s 
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neighbouring system. 
The algorithm requires the user to provide starting points (seeds) for segmentation. In the 

simplest case two kinds of seeds should be given, i.e. seeds corresponding to the object we are 
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segmenting and corresponding to its surroundings (see Fig. 2, 4). Of course, more than two classes 
can be provided, thus segmentation of several objects will be done.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us use a biological metaphor to supply intuitive explanation of automata evolution. An 

image (two or three dimensional) is a discrete universe (set of pixels / voxels) which has to be 
labelled in order to extract its part. Adding starting seed points is equal to the creation of new 
bacteria’s colonies matching image parts, pixels not marked as seeds are considered as neutral 
territory. The labelling process can be treated as a struggle for domination of L different types of 
bacteria, grouped in several colonies (seeds). Because time in this automaton is discrete, in each 
time step every bacterium tries to occupy the neighbouring pixel not belonging to its colony. After 
every step each colony grows, and soon every pixel of the image belongs to one of them. The 
evolution process is finished when, in one of the steps, no new cells have been conquered. 

After the above explanations we can write a draft of program code realizing the automata 
evolution: 

while not StopCondition do 

begin //count automata state in time t+1 basing on its state in time t 

 for each image pixel/voxel p 

 begin //neighbours try to conquer cell p 

  for each q being neighbour of p 

  begin 
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Fig. 1. Evolution of automaton segmenting tumour from Fig.4.: 

 black – neutral territory, white – organ labelled bacteria, grey – background labelled bacteria. Evolution time 
steps are as follows (from upper left): 1, 3, 6, 11, 20, 40 (lower right). 
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    end; 

  end; 

 end; 

end; 

Where g is a monotonous decreasing function on [0, 1]. We have chosen a simple one 
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1−= , where we count the maximal density in the whole image or data set. 

StopCondition can be, as mentioned before, case when during one time step no new cells are 
being conquered and the cell state ceases to change. Unfortunately this approach may lead to an 
execution of a lot of time steps, some of which are completely unnecessary. Because in most cases 
we wish to segment one organ which is a small part of the image, the better way is to narrow the 
calculations to a small box containing the interesting part of image, thus shortening the evolution 
process. Further improvement can be made by consideration of changes (to be more precise: lack of 
state changes) close to object boundaries. We put seed points (the ones belonging to the object and 
the ones belonging to its surroundings) near the boundary of the organ (on both the inner and outer 
side), so during the evolution, the situation on the organ boundary is quickly stabilized and the 
process can be stopped, and the interior of the object (if not jet conquered by cells corresponding to 
it) can be automatically filled. Another way to save time is to execute a fixed number of time steps. 
How many? It depends on the type of segmentation we perform (number of seed points, distance 
between outermost points, etc.), and can be estimated empirically. For example, results presented in 
this article (for two-dimensional cases) where achieved with forty time steps (no noticeable 
differences have been found between forty and, for example, one hundred steps). 

4. RESULTS OF TWO-DIMENSIONAL SEGMENTATION 

We will now present some results of cellular automata segmentation. As it can be seen it is a 
very accurate method allowing to segment different tissues from various types of medical images. It 
should be stressed that accuracy of segmentation depends strongly on the appropriate choice of seed 
points (this will be explained later). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Seeds for MRI brain segmentation Fig. 3. Segmented MRI brain 
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Fig. 4. Seeds for lung tumour segmentation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5. RESULTS OF THREE-DIMENSIONAL SEGMENTATION 

When we deal with three-dimensional data sets we would like to set seed points for one layer 
and let the automata segment the rest of the organ. The presented algorithm can be easily applied to 
two and three dimensions. If seeds for only one layer are given, 3D segmentation turns out to be 
rather accurate, though sometimes nearby tissues are recognized as a part of the segmented organ 
(see Fig. 6). This problem can be easily fixed by post processing of the data set. Applying 
morphological operations [6]: dilation and erosion filtering, destroys small connections between the 
main organ and the oversegmented tissue. Next connected components labelling [1][3] is performed 
to select the only organ of interest to us. As we can see in Fig. 7 such a processing is very effective. 
Apart from post processing of the data set, some pre processing (morphological operations) can also 
be necessary (thresholding at the Otsu level). The main difficulty may be finding a proper place to 
put the seed points at. 

 
 
 
 
 
 
 
 
 

Fig. 5. Segmented lung tumour 
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6. CONCLUSIONS AND FUTURE WORK 

Let us firstly discuss the correct introduction of seed points. In the case of 2D this is rather 
simple and does not need additional explanation. One should remember to mark (as seeds) all (most 
of) characteristic pixels of the object and its surroundings – background. When this is done properly 
we may be sure that each point will grow in proper direction and the boundary will be correctly 
found. In 3D the same rules apply, but some further guidelines must be given. When choosing layers 
in the data set to place seeds in, we should choose ones which have the most characteristic features 
of the tissue we are segmenting and its surroundings. Seeds of the background ought to be placed 
not only near the boundary of the object, but also on different tissues surrounding it (even far away 
from the object). We must remember that we are dealing with a three-dimensional data set and 
tissues (organs) distant from the object on the current slice, can be in touch a few centimetres above. 
This fact should also be taken into consideration when selecting a place for seed points.  

As we could see, on the effects of the two-dimensional segmentation, sometimes the 
segmented boundary is ragged (see Fig.4). When we need to capture the smallest detail, this is 
acceptable in most cases, but it may also be an unwanted artefact. To achieve smoother boundaries a 
slight alteration of the transition rule can be put forward. Let us call the cells of a different label 
than the examined one, the enemies of that cell. Now, cells having more enemies than E1 are 
prohibited from attacking their neighbours, and cells that have more than E2 enemies are 
automatically conquered by the weakest of their neighbours. Values E1, E2 control boundary 
smoothness and should have a value from 6 to 9 (no smoothing) for the Moor neighbouring system. 
This modification has not been tested for three-dimensional cases. 

The presented algorithm is very accurate. Its drawback is a long execution time, but as we 
could see this can be levelled by making some simple modification. In the three-dimensional case 
post processing is required to erase artefacts which could sometimes appear during segmentation. 
Nonetheless, the method itself is very promising and should be developed further to improve its 
performance and find appropriate modifications for specific purposes. We will also accurately 
compare its performance with different segmentation approaches, such as Random Walker, Graph 
Cut or GrabCut. The first test shows a small difference in results, whereas the CA appears to be 
quicker and is a lot simpler in implementation. 
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