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CABRS — CELLULAR AUTOMATON BASED MRI BRAIN SEGMENTA TION

In this article new approach to the MRI brain segration is presented. It is based on the Cellular

Automaton (CA). The method is truly interactivedgoroduces very good results comparable to tholsieeed
by Random Walker or Graph Cut algorithms. It carubed for CT and MRI images, and is accurate fooua
types of tissues [2]. Discussed here version ofaterithm is developed especially for the purpotthe MRI
brain segmentation. This method is still in the gghaf development and therefore can be improved, final
version of the algorithm can differ from the oneegented here. The method is extensible, allowinplsi
modification of the algorithm for a specific tasks we will also see it is very accurate for two-dimsional
medical images. Three-dimensional cases require sorsophisticated data post processing [5], or mgagbme
modifications in the manner in which the automagpows into the third dimension from the two-dimemsil
layer.

1. INTRODUCTION

The method is based on cellular automata, firsttyoduced by Ulam and von Neumann in
1966 [7]. It can be used to solve difficult segnagioih problems, furthermore it is multilabel —
segments many object simultaneously (computatioe tloes not depend on the number of labels).
It is interactive: requires the user to providetsig points for the algorithm (not many seeds are
needed and their entering is not laborious), butum enables him to observe the segmentation
process and make modifications in it. Interactivétyery important for physicians who like to have
some (often large) influence on medical images ggsing. Furthermore, a radiologist will be able
to place seed points very accurately and in chaiatit places of a specific organ (the reason why
will be explained later), and will check the cotrezss of segmentation afterwards.

2. CELLULAR AUTOMATON

A cellular automaton is a discrete model studiedhie computability theory, mathematics,
and theoretical biology [4]. It consists of an mfe, regular grid of cells, each in one of a &nit
number of states. The grid can be in any finite benof dimensions. Time is also discrete, and the
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state of a cell at time t is a function of the esadf a finite number of cells (neighbourhood)iraiet
t-1. These neighbours are a selection of cells r@ativ the specified cell and do not change.
Though the cell itself may be in its neighbourhoibds not usually considered a neighbour. Every
cell has the same rule for updating, based on dhges in this neighbourhood. Each time the rules
are applied to the whole grid a new generationaslyced.

Formally, cellular automata is triplet

A= (S, N)), (1)

where

S— not empty states set

N — neighbouring system

o — transition function describes way of calculateatl state in timeé+1 basing on state of its
neighbours in timeé.

State of celp, on the other hand also consists of three values:

S =(p. 6, Ip), (2)
where
I, — current cell label
0, — cell strength, being real number and we mayrasdhat
I, — is intensity (value) of pixel (or voxel) in imagorresponding to cail

3. APPLICATION OF CELLULAR AUTOMATON FOR SEGMENTATDN

In our case cellular automaton is a sheet of gpmyer (for two dimensional images), where
each square is a cell, and each cell corresponds dixel of image being segmented. In three
dimensional cases we would have a set of two dirneaksheets placed one on another. Because
this segmentation algorithm is multi-label each stlte consists of one of the labels of areasree a
segmenting plus neutral territory labkl gossible labels). During the evolution of automatther
cells slowly conquer neutral territory. Obviousigch cell has eight neighbours on the same plane,
and if we are dealing with a three dimensional ctse are also eighteen ones on the planes above
and beneath. In a more general instance we mayarsxample, von Neumann'’s:

N(p)={qDZ” :||p—q||1:=i|pi—qi|=1} 3)
or Moor’s
N(p)={qDZ” lp—d. :=ri91§}r31pi—qi|=1} (4)

neighbouring system.
The algorithm requires the user to provide starfpognts (seeds) for segmentation. In the
simplest case two kinds of seeds should be given,seeds corresponding to the object we are
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segmenting and corresponding to its surroundings E3g. 2, 4). Of course, more than two classes
can be provided, thus segmentation of several tsbyeil be done.

Fig. 1. Evolution of automaton segmenting tumoantiFig.4.:
black — neutral territory, white — organ labellbdcteria, grey — background labelled bacteria. Exign time
steps are as follows (from upper left): 1, 3, 6, 20, 40 (lower right).

Let us use a biological metaphor to supply inteitexplanation of automata evolution. An
image (two or three dimensional) is a discrete ensg (set of pixels / voxels) which has to be
labelled in order to extract its part. Adding stagtseed points is equal to the creation of new
bacteria’s colonies matching image parts, pixels marked as seeds are considered as neutral
territory. The labelling process can be treated asruggle for domination df different types of
bacteria, grouped in several colonies (seeds). Becéime in this automaton is discrete, in each
time step every bacterium tries to occupy the reghing pixel not belonging to its colony. After
every step each colony grows, and soon every mkéhe image belongs to one of them. The
evolution process is finished when, in one of ties, no new cells have been conquered.

After the above explanations we can write a drafprmgram code realizing the automata
evolution:

whil e not StopCondition do
begin //count autonata state in tinme t+1 basing on its state in tinme t
for each inmage pixel/voxel p
begi n //neighbours try to conquer cell p
for each q bei ng nei ghbour of p
begi n
i1 gli,-1,])®; >6. then
begin //attack succeeded cell p has now | abel of cell (q

/1 and new strength
|t =]
b=

t
q
o =qll, -1 o),
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end;
end;
end;
end;

Where g is a monotonous decreasing function on [0, 1]. kd®e chosen a simple one

X
g(x) = 1_W , Where we count the maximal density in the wholage or data set.

StopCondition can be, as mentioned before, casa wheng one time step no new cells are
being conquered and the cell state ceases to cheimfertunately this approach may lead to an
execution of a lot of time steps, some of which@mpletely unnecessary. Because in most cases
we wish to segment one organ which is a small plathe image, the better way is to narrow the
calculations to a small box containing the intengspart of image, thus shortening the evolution
process. Further improvement can be made by caasioie of changes (to be more precise: lack of
state changes) close to object boundaries. Wegaat goints (the ones belonging to the object and
the ones belonging to its surroundings) near thentary of the organ (on both the inner and outer
side), so during the evolution, the situation oa trgan boundary is quickly stabilized and the
process can be stopped, and the interior of thecolif not jet conquered by cells corresponding to
it) can be automatically filled. Another way to saume is to execute a fixed number of time steps.
How many? It depends on the type of segmentatiopeviorm (number of seed points, distance
between outermost points, etc.), and can be esd@anpirically. For example, results presented in
this article (for two-dimensional cases) where aebd with forty time steps (no noticeable
differences have been found between forty andgxample, one hundred steps).

4. RESULTS OF TWO-DIMENSIONAL SEGMENTATION

We will now present some results of cellular auttarsegmentation. As it can be seeniitis a
very accurate method allowing to segment diffetessues from various types of medical images. It
should be stressed that accuracy of segmentatpends strongly on the appropriate choice of seed
points (this will be explained later).

Fig. 2. Seeds for MRI brain segmentation Fig. 3. Segmented MRI brain
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Fig. 4. Seeds for lung tumour segmentation Fig. 5. Segmented lung tumour

5. RESULTS OF THREE-DIMENSIONAL SEGMENTATION

When we deal with three-dimensional data sets waldvike to set seed points for one layer
and let the automata segment the rest of the ofienpresented algorithm can be easily applied to
two and three dimensions. If seeds for only onerayre given, 3D segmentation turns out to be
rather accurate, though sometimes nearby tiss@eseaognized as a part of the segmented organ
(see Fig. 6). This problem can be easily fixed lmgtpprocessing of the data set. Applying
morphological operations [6]: dilation and erosfitering, destroys small connections between the
main organ and the oversegmented tissue. Next ctatheomponents labelling [1][3] is performed
to select the only organ of interest to us. As ae see in Fig. 7 such a processing is very effectiv
Apart from post processing of the data set, sorag@pcessing (morphological operations) can also
be necessary (thresholding at the Otsu level).mam difficulty may be finding a proper place to
put the seed points at.
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6. CONCLUSIONS AND FUTURE WORK

Let us firstly discuss the correct introductionseied points. In the case of 2D this is rather
simple and does not need additional explanatior €ould remember to mark (as seeds) all (most
of) characteristic pixels of the object and itsrsundings — background. When this is done properly
we may be sure that each point will grow in progeection and the boundary will be correctly
found. In 3D the same rules apply, but some furjugdelines must be given. When choosing layers
in the data set to place seeds in, we should chmese which have the most characteristic features
of the tissue we are segmenting and its surrousdiBgeds of the background ought to be placed
not only near the boundary of the object, but alsdifferent tissues surrounding it (even far away
from the object). We must remember that we areimgalith a three-dimensional data set and
tissues (organs) distant from the object on theectislice, can be in touch a few centimetres above
This fact should also be taken into consideratibenvselecting a place for seed points.

As we could see, on the effects of the two-dimaraiosegmentation, sometimes the
segmented boundary is ragged (see Fig.4). Wheneed to capture the smallest detail, this is
acceptable in most cases, but it may also be aantew artefact. To achieve smoother boundaries a
slight alteration of the transition rule can be furtwvard. Let us call the cells of a different labe
than the examined one, the enemies of that cellv,N®lls having more enemies than E1 are
prohibited from attacking their neighbours, andlsdhat have more than E2 enemies are
automatically conquered by the weakest of theighmaours. Values E1, E2 control boundary
smoothness and should have a value from 6 to 8rframthing) for the Moor neighbouring system.
This modification has not been tested for threeettisional cases.

The presented algorithm is very accurate. Its demkllis a long execution time, but as we
could see this can be levelled by making some simpddification. In the three-dimensional case
post processing is required to erase artefactshatocld sometimes appear during segmentation.
Nonetheless, the method itself is very promising ahould be developed further to improve its
performance and find appropriate modifications $pecific purposes. We will also accurately
compare its performance with different segmentaipproaches, such as Random Walker, Graph
Cut or GrabCut. The first test shows a small défexe in results, whereas the CA appears to be
quicker and is a lot simpler in implementation.
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