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BAYESIAN APPROACH TO CLASSIFIER DESIGN WITH APPLICATION  
TO QRS DETECTION IN ECG SIGNAL 

The paper presents application of Bayesian approach to design of kernel based classifier. The 
classification function is constructed using the probability distribution function of standard normal distribution 
and independent gaussian random variables. The parameters of such variables are computed using iterative 
Expectation-Maximization algorithm. The paper presents also application of algorithm of computation 
parameters of classification function to modeling Takagi-Sugeno-Kang fuzzy systems. Finaly the application to 
detection of QRS cycles in ECG signal is presented, with the results of numerical experiment using AHA 
databese. 

1. INTRODUCTION 

The classfication task aims at inferring a functional relation Υ→Χ:f  between numerical 

input data and categorical output values. The design of classifier is based on finite training set 
{ }),(...,),,(),,( 2211 NN yyyT xxx= . Usually the inputs are d-dimensional real vectors, dℜ∈x  

and outputs might be integer values, representing class labels. Usually the function f is assumed to 
have a fixed structure and to depend on a vector of parameters β .In this case the goal becomes to 

estimate the parameters from the training data. In this paper the two-class case will be taken into 
account, hence }1,0{=Υ , and the classification is based on function of form 
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and T
Nhhh ))(,),(),(()( 21 xxxxh …=  is vector of fixed base functions. This is called generalized 

linear model, as in [1], [2]. The main goal of the classifier design procedure is to achieve 
high generalization ability [5], as to avoid over-fitting to training data, but still to be able to 
capture main behaviour of input-output relationship. This may be obtained by controlling 
complexity of learned function, using the variety of tools. In the latter part of paper the 
bayesian approach to classifier desing will be presented, in order to find sparse solutions 
(having only a few non-zero coefficients), which lead to good generalization ability. As the 
base functions, the values of kernel funcions will be used: 

 T
NKKK )),(,),,(),,(,1()( 21 xxxxxxxh θθθ …= . (3) 

2. CLASSIFIER DESIGN METHOD 

As in [2], the classification rule is defined as: 
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and )|1(1)|0( xyPxyP =−== . The consequence of classification function form is the need 
of setting values of parameters β  and θ . The estimates of iβ  are evaluated using bayesian 

inference. The Laplace distribution with parameter λ  is taken as a common prior 
distribution of iβ  and the parameters are assumed to be independent. This leads to learning 

procedure, where the posterior probability of correct classification is maximized. The vector 
),,( 1 Nzz …=z  of hidden variables is introduced: 
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where jw  are independent Gaussian variables ),0( jN σ . This is generalization of model 

described in [2], where all variables jw  have common standard deviation. The estimation of 

parameters iβ  is performed by Expectation-Maximization procedure. In the E-step the 

expected value of β  is computed: 

 ∫= dzppQ tt ),|(log)ˆ,|()ˆ|( yzββyzββ , (6) 

(where the upper index denotes succesive iteration number) and next, in the M-step the 
value of )ˆ|( tQ ββ  is maximized with respect to tβ̂ : 

 )ˆ|(maxargˆ 1 tt Q βββ
β

=+ . (7) 
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This leads to following iterative procedure: 

 ),ˆ|( yβzv tt E= , (8) 

 tTTt vΣHAHΣHβ 11111 )(ˆ −−−−+ += , (9) 

where ))(,),(),(( 21 Nxhxhxh …=H , ),,,( 22
2

2
1 Ndiag σσσ …=Σ , and A is (diagonal) covariance 

matrix of prior distribution of β . The iteration stops as  
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for arbitrarily chosen value of ε . 

3. MODELING TAKAGI-SUGENO-KANG SYSTEM 

The procedure described in the previous section may be applied to modeling Takagi-
Sugeno-Kang (TSK) fuzzy system [3], [4]. In this case, the set of input variables dℜ∈x  is 
clustered using fuzzy c-mean clustering assuming that each of c clusters corresponds to a 
fuzzy if-then rule in the TSK system. For each cluster the classifier is designed using input 
and output data and the overall output of TSK system is computed as aggregation of outputs 
of individual classifiers. The values of jσ  for each classifier can be established by following 

formula: 

 ( ) },...,2,1{},...,2,1{)()(2 ciNnxA
p

n
i

j ∈∀∈∀= −σ , (11) 

where )()(
n

i xA  is the membership of input value nx  in ith cluster and p is the parameter 

determining the influence of this membership on uncertainty about the single input data. The 
output of TSK system is still interpreted as a posterior probability of x  belonging to class 1. 

4. APPLICATION TO DETECTION QRS CYCLES 

The algorithm described above was aplied to detection of QRS cycles in ECG signal. 
The main idea of using this classification procedure is to decide whether or not, does the 
investigated sample appear to be the center (fiducial point) of some QRS cycle. In this case 
the input vectors are formed from the finite time window around this sample: 

 ))(,),(,),(( MnunuMnun +−= ……x , (12) 
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where u(n) is time series representing digital ECG signal in single channel. The experiment 
was performed using data from AHA (American Heart Association) database of 
electrocardiographic signals. The database contains 80 two-dimensional time series 
representing two-channel ECG signals with sampling rate 250Hz. Only signal from first 
channel was used and the width M of time window was set to 12. The polynomial kernel 
function was chosen: 
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with r=1 and 121 ==== dθθθ … . The parameters λ  and p was determined during the 

learning phase using cross-validation method. The experiment was performed individually 
for each of 80 signals in AHA database. In each case the learning set consisted of samples in 
first 30 QRS cycles. The rest of samples was the test set. Table 1 presents results of 

experiment in form of sensitivity (
negativesfalseofnumberpositivestrueofnumber

positivestrueofnumber

+
) and 

positive predictability (
positivesfalseofnumberpositivestrueofnumber

positivestrueofnumber

+
). 

 
Signal index Sensitivity (%) Positive 

predictability 

(%) 

Signal index Sensitivity (%) Positive 

predictability 

(%) 

1201 99.13 98.59 5201 98.79 97.90 

1202 99.07 98.37 5202 98.67 98.30 

1203 99.00 98.46 5203 99.01 98.01 

1204 99.06 98.33 5204 99.04 98.21 

1205 99.01 98.90 5205 99.13 97.99 

1206 99.07 98.34 5206 98.90 98.20 

1207 99.34 98.15 5207 98.78 98.04 

1208 99.37 98.41 5208 99.20 98.30 

1209 99.35 98.83 5209 99.01 98.26 

1210 99.02 98.66 5210 98.89 98.17 

2201 98.79 98.48 6201 98.98 97.67 

2202 99.01 98.45 6202 98.79 97.48 

2203 99.05 98.46 6203 98.86 97.94 

2204 98.89 98.09 6204 98.84 97.69 

2205 98.99 98.55 6205 98.66 97.88 

2206 99.04 98.47 6206 98.88 98.03 

2207 99.54 98.22 6207 98.67 97.57 

2208 99.17 98.47 6208 98.57 97.56 

2209 99.43 98.40 6209 98.56 97.37 
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2210 99.12 98.34 6210 98.46 97.50 

3201 99.17 98.26 7201 98.15 97.03 

3202 99.21 98.44 7202 98.59 97.33 

3203 99.45 98.55 7203 98.36 97.20 

3204 98.67 98.33 7204 98.56 97.40 

3205 98.97 98.29 7205 98.36 97.54 

3206 99.14 98.49 7206 98.35 97.12 

3207 99.15 98.70 7207 98.55 97.03 

3208 99.23 98.50 7208 98.12 97.14 

3209 99.42 98.39 7209 98.14 97.32 

3210 99.47 98.69 7210 98.56 97.31 

4201 98.87 98.40 8201 97.99 97.00 

4202 99.24 98.50 8202 98.45 97.05 

4203 99.34 98.66 8203 98.88 97.12 

420 99.56 98.36 8204 98.45 97.02 

4205 99.34 98.29 8205 98.33 97.40 

4206 99.34 98.40 8206 98.67 97.23 

4207 99.45 98.35 8207 98.37 97.22 

4208 99.56 98.50 8208 97.82 97.03 

4209 99.45 98.20 8209 98.01 97.09 

4210 99.15 98.31 8210 97.50 97.03 

Tab. 1 Results of QRS detection experiment on AHA database 
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