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EMPIRICAL BAYESIAN AVERAGING OF BIOMEDICAL SIGNALS 

The paper presents empirical Bayesian approach to problem of signal averaging which is commonly used 
to extract a useful signal distorted by a noise. The averaging is especially useful for biomedical signal such as 
ECG signal, where the spectra of the signal and noise significantly overlap. In reality can be observed variability 
of noise power from cycle to cycle which is motivation for using methods of weighted averaging. Performance of 
the new method is experimentally compared with the traditional averaging by using arithmetic mean and 
weighted averaging method based on criterion function minimization.  

1. INTRODUCTION 

In the most of biomedical signal processing systems noise reduction plays very important role. 
Accuracy of all later operations performed on signal, such as detections or classifications, depends on the 
quality of noise-reduction algorithms. Using the fact that certain biological systems produce repetitive 
patterns, an averaging in the time domain may be used for noise attenuation. Traditional averaging 
technique assumes the constancy of the noise power cycle-wise, however the most types of noise are not 
stationary. In these cases a need for using weighted averaging occurs, which reduces influence of hardly 
distorted cycles on resulting averaged signal (or even eliminates them). 

The paper presents new method for resolving of signal averaging problem which incorporates 
empirical Bayesian inference. By exploiting a probabilistic Bayesian framework [1], [4] and an 
expectation-maximization technique [2] it can be derived an algorithm of weighted averaging which 
application to electrocardiographic (ECG) signal averaging is competitive with alternative methods as 
will be shown in the later part of the paper. 

Let us assume that in each signal cycle )( jyi  is the sum of a deterministic (useful) signal )( jx , 

which is the same in all cycles, and a random noise )( jni  with zero mean and variance for the ith 

cycle equal to 2
iσ . Thus, )()()( jnjxjy ii += , where i is the cycle index Mi ,,2,1 …= , and the j is 

the sample index in the single cycle Nj ,,2,1 …=  (all cycles have the same length N). The weighted 

average is given by 
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where iw  is a weight for ith signal cycle and )( jv  is the averaged signal. 

2. SIGNAL AVERAGING METHODS 

2.1. ARITHMETIC AVERAGING 

The traditional ensemble averaging with arithmetic mean as the aggregation operation gives 
all the weights iw  equal to 1−M . If the noise variance is constant for all cycles, then these weights 

are optimal in the sense of minimizing the mean square error between v and x, assuming Gaussian 
distribution of noise. When the noise has a non-Gaussian distribution, the estimate (1) is not 
optimal, but it is still the best of all linear estimators of x [5]. 

2.2. WEIGHTED AVERAGING METHOD BASED ON CRITERION FUNCTION MINIMIZATION 

As it is shown in [6], for yi = [yi(1), yi(2),…, yi(N)]T, w = [w1, w2,…, wM]T and 
v = [v(1), v(2),…, v(N)]T minimization the following scalar criterion function 
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where )(⋅ρ  is a measure of dissimilarity for vector argument and ),1( ∞∈m  is a weighting 

exponent parameter, with respect to the weights vector yields 
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for Mi ,,2,1 …= . When the most frequently used quadratic function 
2

2
)( ⋅=⋅ρ is used, the averaged 

signal can be obtained as 
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for the weights vector given by (2) with the quadratic function. The optimal solution for 
minimization (2) with respect to w and v is a fixed point of (3) and (4) and it is obtained from the 
Picard iteration. 
 If m  tends to one then the trivial solution is obtained where only one weight, corresponding 
to the signal cycle with the smallest dissimilarity to averaged signal, is equal to one. If m tend to 
infinity then weights tend to 1−M  for all i. Generally, a larger m results in a smaller influence of 
dissimilarity measures. The most common value of m is 2 which results in greater decrease of 
medium weights [6]. 

2.3. EMPIRICAL BAYESIAN WEIGHTED AVERAGING METHOD 

Given a data set )}({ jyy i= , where i is the cycle index Mi ,,2,1 …=  and the j is the sample 

index in the single cycle Nj ,,2,1 …= , there are made assumptions that )()()( jnjxjy ii += , where 

a random noise )( jni  is zero-mean Gaussian with variance for the ith cycle equal to 2
iσ , and signal 

x has also Gaussian distribution with zero mean and covariance matrix ),,,(diag 22
2

2
1 NB ηηη …= . 

Thus, from the Bayes rule, the posterior distribution over x and the noise variance is proportional to 
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where 2−= ii σα  and 2−= jj ηβ , because of assumption that the prior )(αp  is approximately constant 

(for large M the influence of this prior is very small). The values x and α  which maximize (5) are 
given by 
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for Mi ,,2,1 …=  and Nj ,,2,1 …= . Since jβ  could not be observed, the iterative EM algorithms is 

used like in [3]. As values of jβ  it is taken  
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assuming an exponential prior )exp()( jjp λβλβ −=  for all j. The estimate λ̂  of hyperparameter λ  

can be calculated by applying empirical method [7], because 
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 Therefore the proposed Bayesian weighted averaging algorithm can be described as follows, 
where ε  is a preset parameter: 

1. Initialize NRv ∈)0( . Set the iteration index 1=k . 

2. Calculate the hyperparameter )(kλ  using (9), next 
)(k

jβ  using (7) for Nj ,,2,1 …=  and )(k
iα  

using (6) for Mi ,,2,1 …= , assuming )1( −= kvx . 

3. Update the averaged signal for kth iteration )(kv  using (6) and 
)(k

jβ  and )(k
iα , assuming 

xv k =)( . 

4. If ε>− − )1()( kk vv  then 1+← kk  and go to 2, else stop. 

3. NUMERICAL EXPERIMENTS 

In all experiments using Weighted Averaging method based on Criterion Minimization Function 
(WACMF) and Empirical Bayesian Weighted Averaging method (EBWA) calculations were initialised 
as the means of disturbed signal cycles. Iteration were stopped as soon as the L2 norm for a successive 
pair of vectors was less than 10-6 , respectively w vectors for the WACMF and v vectors for the EBWA. 
For a computed averaged signal the performance of tested methods was evaluated by the maximal 
absolute difference between the deterministic component and the averaged signal. The root mean-square 
error (RMSE) between the deterministic component and the averaged signal was also computed. All 
experiments were run in the MATLAB environment. 

The simulated ECG signal cycles were obtained as the same deterministic component with added 
realizations of random noise. The deterministic component presented in Fig. 1 was obtained by averaging 
500 real ECG signal cycles (2000-Hz and 16-bit resolution) with high signal to noise ratio. Before 
averaging these cycles were time-aligned using the cross correlation method. A series of 100 ECG cycles 
was generated with the same deterministic component and zero-mean white Gaussian noise with four 
different standard deviations. For the first, second, third and fourth 25 cycles, the noise standard 
deviations were 10, 50, 100, 200 µV, respectively. These signal cycles were averaged using the following 
methods: Arithmetic Averaging (AA), WACFM with m = 2 and EBWA. Subtraction of deterministic 
component from these averaged signal gives a residual noise.  
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Fig. 1 The simulated ECG signal and this signal with 50µV standard deviation noise. 

The RMSE and the maximal value (MAX) of residual noise for all tested method are presented in 
Table 1. In this table there are also presented result when power of noise was multiplied by 2 and 10 
respectively. The best results for each power of noise are bolded. It shows that in all experiments the 
smallest RMSE were obtained by EBWA method and a little bit worse results were obtained by 
WACFM, but the smallest MAX error for noise power increased by 10 was obtained by WACFM. 

 
Noise power Type of error AA WACFM BWA 

RMSE [µV] 12.0964 1.9381 1.9131 1× 

MAX [ µV] 39.1728 5.7307 5.1671 

RMSE [µV] 24.1927 3.8762 3.7788 2× 

MAX [ µV] 78.3457 11.4615 10.3521 

RMSE [µV] 120.9635 19.3810 17.2270 10× 

MAX [ µV] 391.7285 57.3073 58.9807 

Tab. 1 RMSE and maximum error for averaged ECG signals with Gaussian noise. 

4. CONCLUSION 

In this work the new approach to weighted averaging of biomedical signal was presented 
along with the application to averaging ECG signals. Presented method uses the results of empirical 
Bayesian methodology which leads to improved reduction of noise comparing with alternative 
methods. The new method is introduced as Bayesian inference together with expectation-
maximization procedure. It is worth noting that the new algorithm does not require setting of 
additional parameters in contrast to for example WACFM which needs value of an exponential 
parameter m. The only parameter which influences performance of the procedure λ is estimated 
during iterations from input values by empirical method. The results of numerical experiments show 
usefulness of the presented method in the noise reduction in ECG signal competitively to existing 
algorithms. 
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