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USING NEURO-FUZZY SYSTEM

Abstract: The biomedical signals such as an etadtactivity of the heart are commonly recordecdhwit
noise. One of the most difficult types of disturbes that need to be removed from ECG records &emtrical
activity of muscles (EMG). This paper introduces tlesearch on possibility of myriad filters applica to
suppress the EMG type of noise in ECG signals. fifo@er myriad filtering operation requires the kihedge
about the statistical properties of the signal #iktws choosing suitable values of the filter &ingy parameter.
Unfortunately, standard methods of an estimatiothefmyriad linearity parameter are not accurataugh to
assure appropriate filtering quality. In this woeqg application of Artificial Neural Network Baseh Fuzzy
Inference System is introduced to solve this tdskshow usefulness of the proposed algorithm twmarical
experiments are provided. The first one concelttesifig of an ECG signal corrupted with a simulaitegulsive
noise modelled by symmetriestable distributions. In the second experimergad muscle noise is used.

1. INTRODUCTION

The biomedical signals are usually recorded witlseoMany different kind of biomedical
signals exist, but for the purpose of this workE®G signal was chosen. The ECG signal arises as
a result of an electrical activity of the heart ainid almost always disturbed by a noise. The neusc
noise (EMG) is the most difficult to suppress beeaits frequency spectrum agrees with the
spectrum of ECG signal for a wide range of freqyearad it shows frequently an impulsive nature.
The white Gaussian noise is usually used to mda#eEMG disturbances, but this traditional model
may fail. In this work the muscle noise is modellesing thea-stable distribution model. The
impulsive noise requires robust methods that cqaprass it [7, 10]. Therefore, non-linear filters
can be applied. To a group of non-linear filterdobgs a myriad filter for which the filtering
performance can be controlled by the so calledahibe parametek which plays the fundamental
role in the theory of myriad filters [6]. In thisaper we applied a myriad filter to suppress an
impulsive type of noise in ECG signal. The novalfythis non-linear filtering method consists in
application of the Artificial Neural Network Basewh Fuzzy Inference System (ANNBFIS) for
estimation of the unknown paramekao assure improvement of the filtering quality.

2. IMPULSIVE NOISE
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The muscle noise may be modelled with the Symmet&table distribution (8S) [8]. The
class of @S is characterized by their distribution wusing aarelteristic function

#(t) = exp(jty - y|t|”) , wherea is the characteristic exponent restricted to #rge 0 <a < 2, iis

the real-valued location parameterjs the dispersion of the distribution. The most amant
parameter otr-stable distributions is the characteristic expamrerpecause it controls the heaviness
of the distribution tails [10]. The knowledge bEtparameters of the impulsive noise is required fo
the proper working of a myriad filter. For an esdtion of thea-stable distribution several methods
have been proposed, see [4, 10] for details.  work, the method described in [4] is used. Let
Y =log K|, whereX denotes random variable of tleestable distribution. The first and second
moment ofY can be written as:

E(Y) = ce(i—lj +Liog(y); Var(y) = ELY - E(V)]?) :i(iz+1j, (1)
a a 6\a° 2

where:Ce = 0.57721566... is Euler constaB() is the expected value. From (1) the characteristi
exponenta and the dispersiop are calculated.

3. THE NON-LINEAR MYRIAD FILTER

For a given set of observatio{sxi} 21’ wherex=6+n; (i=1,...,N; @is a location parameter

and{n}", is a sequence of i.i.d. zero-mean noise compopnlritsthe signal length), a maximum

N
likelihood estimate (M-estimator) of location is/gh as [5]:0 = arg minz,o(x,. -60),wherep(Jlis
i=1
called the cost function of tHd-estimator andN is the filter length. Ifo(x) = log(k*+x?) then the
simple myriad filter is obtained [5, 6]. Using tfeet that logl)l is a strictly increasing function, the
output of myriad filter can be determined from:

N
6, = myriadx,,X,.,...,., k) = argmginZlog[k2 +(x —0)2], 2)
i=1

wherek is a tuneable constant called the linearity patama the filter. The class of myriad filters
includes a rich variety of filtering operations whican be controlled by simply adjusting the
linearity parametek. The case&k — 0 leads to highly robust selection filter callda tweighted
mode-myriad filter. The other case takes plack, # « anda- 2, then the output of the myriad
filter behaves like the output of moving averagdeefi[5, 6]. We use an ANNBFIS for estimation of
unknown values of the linearity parameter for myridters in the following considerations.

4. NEURO-FUZZY SYSTEM WITH PARAMETERIZED CONSEQUENST

Artificial Neural Network Based on Fuzzy Inferen8gstem is a neuro-fuzzy system with
parameterized consequents that generates inferessudts based on fuzzy if-then rules. In
ANNBFIS fuzzy sets of rule antecedents have Ganssiambership function defined using two
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parameters: centec](i) and dispersionsgi). The linguistic connective "and" of multi-inputle

predicates is represented by algebraic productin@onsequents of ANNBFIS fuzzy rules have
symmetric triangular membership functions. They bandefined using two parameters: width of
the triangle basev) and center of gravity location determined by Imeambinations of fuzzy

system inputs:y® (x,) =p"Tx,, where X, = [1,%y Xopr.-- Xo )T =[LX,]" is the extended input

vector, p) = [pg),pf),...pt(i)]T is a vector of parameters amddenotes a number of inputs. This

dependency formulates so called parameterized (rgpwionsequent [2]. The neuro-fuzzy system
with parameterized consequents allows both conjmetnd logical interpretations of fuzzy if-then
rules. We assume conjunctive interpretation usiaggén's product in the following considerations.
Assuming additionally a normalized arithmetic mess an aggregation operator and modified
indexed center of gravity [2] as a defuzzifier, ean evaluate the final crisp output value of the
system from the following formula:

I (i) (i) ‘ ! )
yo= 3 F) 0 )= 3606, )yP ), @
i=1 ZW(])F(])(XO) i=1

j=1

wherel denotes a number of fuzzy if-then rules aﬁ@(xo) is the firing strength of theth fuzzy

rule. The fuzzy system with parameterized consegueain be treated as a radial basis function
neural network [2]. Consequently, the unknown ndumzy system parameters can be estimated
using learning algorithms of artificial neural netks [2, 3]. In this work, a hybrid learning
procedure, which connects deterministic annealimd) laast square methods is presented [3]. For
next considerations let us assume that we MNwexamples of input vectors,(n)00" and the

same number of known output vaIuQin)D [0 which formulate the training set. Our goal is the

extraction of a set of fuzzy if-then rules thatregents the knowledge of the phenomenon under
consideration. The extraction process consistiastimation of membership function parameters
of antecedents as well as consequents. The nurhbalesl is also unknown. We assume that it is
pre-set arbitrarily. The number of inputis defined by the size of input training vectaredily.

To increase ability to avoid many local minima tl@ps steepest descent method used in
original ANNBFIS learning algorithm, we employ thechnique of deterministic annealing [9]
adapted for the sake of learning the neuro-fuzzsgesy with parameterized consequents [3]. The
equation (3) defines the neuro-fuzzy system asxdun@ of experts (models). Its global output is
expressed as a linear combination otutputsy(i)(xo) of local models, each represented by a single

fuzzy conditional statement. A randomness of tleaation between data and local models can be
measured using the Shannon entrd@yln deterministic annealing method the objective is
minimization of the cost function defined as a sqdaerrorkE while simultaneously controlling the
entropy level of a solution. The deterministic aalivey optimization problem is formulated as a
minimization procedure of the Lagrangian= E — TS whereT is the Lagrange multiplier [9].

A connection between the equation presented abiodehe annealing of solids is essential here.
The quantityL can be identified as the Helmholtz free energplofsical system with "energ,
entropyS and "temperaturerl [9]. The procedure involves a series of iteratioisle the entropy
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level is reduced gradually. To allow achievementtiodé cost global optimum the simulated
annealing method framework is used. The algorittants at a high level of pseudo-temperature
Tmaxand tracks the solution for lowered valueg oThe pseudo-temperature reduction procedure is
determined by the annealing schedule function. B&ethe following decremental rule in the next
considerationsT — gT,where qD(O;l) is a pre-set parameter. At each level of tempezaiwe
minimize the Lagrangian iteratively using gradidascent method ib over the parameter space. In
the original ANNBFIS learning method parameterslioéar equations in consequemﬁ are

estimated using the least square (LS) methodt[afdelerates the learning convergence [2]. For the
same reason we use the LS algorithm in next coradidas. The parametepi‘) are adjusted using
LS procedure and then tuned using the determingstitealing algorithm. To avoid the matrix
inverse operation the recurrent LS method [2] camapplied. For decreasing the computational
burden of the learning procedure the deterministinealing method with "freezing” phase (DAF)
can be applied [3, 9]. The "freezing" phase &i8af the calculation op(i) using LS procedure

after every decreasing step of pseudo-temperatairge while keepingcgi), s](i) as well asw!’)

constant. Another problem is an estimation of ahitvalues of membership functions for
antecedents. It can be solved by means of prelimpiastering of the input training data [2].

5. NUMERICAL EXPERIMENTS

To validate the introduced method of an estimatiba linearity parameter for myriad filters
two numerical experiments concerning filtering oC& signals corrupted with noise were
conducted. In the first, the simulated disturbarmpeslelled by symmetria-stable distributions are
used @'D[l.4, 2]). In the second, a real muscle noise was appliredrder to evaluate a filtering
performance the normalized mean absolute error (EMA was used
NMAE = Ztl|y(i)—s(i)|/ZN:l|x(i)—s(i)| [1009%, where:y(i) is the output of the myriad filtes(i)

is the deterministic part of signal without noisel(i) is the noisy signal. The noisy ECG cycles
were obtained by adding a noise with five values1(® 20, 30 [dB]) of Generalized Signal-to-
Noise Ratio (GSNR) to a “clean” ECG cycle modelleg a linear combination of Hermite
functions. The GSNR replaces the standard SNR,useca variance foa-stable noise does not
exist. The GSNR is defined a@SNR=log,,|0? /(ay)| where: o2 is the variance of a “clean”

signal, yis the dispersion of an impulsive noise [4] and a scaling factor. As a reference we used: a
moving average filter (MA), a median filter (MEDhé a myriad filter with constant value of the
linearity parameterk set to 1. The first objective was to create a learset for the ANNBFIS
neuro-fuzzy system. The application of four diffgr@arameters defining the impulsive noise was
tested: a characteristic exponenta dispersiory; a kurtosiK and a value of parameter defining the

area under a curve of cumulative distribution sfgnal A= Z.N=1 F(x)/ Zzlx(i)x(i), whereFx()

is the cumulative distribution. We examined theldwing definitions of input vectors: (i)
x, =[a. | ; (i) x, =[a.y.K]"; (i) x, =[a,y.Al"; and (iv) x, =[a,y,K,Al". Generally the best
filtering results (the lowest values of NMAE erromere obtained if all four parameters were
employed in the learning process. As an outguive used the optimal values of linear parameter
Kopt calculated on the basis of a comparison of a sigitabut noise, a disturbed signal and a signal
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after filtering process. The optimal linearity paeter was defined as an argument for which the
normalized mean square error functioNMSE=>"[y(i)-s(i)/>." [s()} reached the

minimum, i.e. k., = mkin NMSE(k). To get reasonable learning results, wetset— forla very

large values okop: (Kopt >1000) for which the myriad filter behaves likeetmoving average filter.
The learning of the ANNBFIS system was carriedfouthe number of if-then ruldschanged form
2 to 6. For the deterministic annealing procedtwe following parameters’ values were applied:
T, =f10°10%,...10°, T, =10°T,.,, q=0.95. The initial values of the learning step for

steepest descent procedyrg were changed in the range from 0.01 to 0.10 wigp ©.01. The
initial values of antecedents parameters were agtitchusing FCM [1] clustering results. In the first
numerical experiment we used the data set whiclsistnofN, = 2200 learning pairs (an input
vector and an output value), with parameters dafirthe impulsive noise calculated for a single
ECG cycle corrupted with the artificial noise. Imetfiltering process we applied a set of if-then
rules for which the lowest value of the learningoerwas achieved. Values of the learning
parametersrni, Tmay that led to the best learning quality are showitable 1. To test the filtering
quality with ANNBFIS system we used noisy ECG signahich were not present during the
learning phase. If the output value of ANNBFIS wegjative then the myriad filter was replaced
with the moving average filter. The obtained resNMAE index values) are tabulated in Table 1.

Table 1. Results of filtering of ECG signals cotegwith the artificial noise (GSNR = 10dR;= 21)

=2 =3 =4 =5 =6
a MA MED kop k=1 (0.08,16) | (0.04,16) | (0.07,16) | (0.09,20% | (0.08,18)
1.4] 39.314« |16.889¢| 15.377( | 26.444( | 16.826' | 16.903! | 17.155 | 16.6248 | 16.736(
1.5| 36.0899 | 19.0976 16.9918 | 26.7446| 18.3767 18.7428 19.38978.0572 | 18.6419
1.6| 31.7250 | 21.638] 18.9836| 26.7620 20.5439 20.6203 20.63420.2619 | 20.6304
1.7| 28.9597 | 23.5308 20.2122 | 25.9391| 23.1324 22.8896 22.76422.2388 | 23.0031
1.8| 27.1148 | 25.4678 21.5024 | 25.0588| 23.9395 23.4304  23.55623.2550 | 23.8289
1.9| 253288 | 27.0498 22.5279 | 24.2956| 24.2501 23.9697 24.05523.9993 | 24.2947
2.0| 23.8336 | 28.4619 22.8925| 23.0969 24.041 23.8193 23.95204.0846 | 24.1794

The obtained results confirm that the application tke ANNBFIS neuro-system for
estimation of the myriad filter parameter leadstprovement of the filtering quality in comparison
to the linear MA and the nonlinear MED filter. Orflyr a = 2 we did not have the decrease of the
NMAE index in comparison to the myriad filter wittonstant linearity parameter value. Fpr 2
application of the MA filter leads to good filtegnquality also. It is due to the Gaussian
characteristic of the noise. Generally, the bétring results were obtained for 5 if-then rules,
nini = 0.09 andTmax= 1000. In the second numerical experiment we usgaka set which consists
of N, = 800 learning pairs with values of parametersnd&j the impulsive noise calculated for a
single ECG cycle corrupted with real muscle distmde samples. The specification of the learning
algorithm was defined the same. Again, to testfittering quality we used noisy ECG signals
which were not present during the learning phas®il& to the previous example, if the output
value of ANNBFIS was negative then the myriad fille&as replaced with the moving average filter.
The NMAE values of filtering together with valuektbe learning parameters;{, Tmay that led to
the best learning quality are shown in Table 2. $foall values of GSNR the MA filter and myriad
filters lead to smallest values of NMAE. If the GBNevel is high then a model of noise
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characterized by a Laplacian distribution shoulgassumed for muscle samples. Therefore, the best
filtering results are obtained for MED filter which optimized for such distribution.

Table 2. Results of filtering of ECG signals cotegwith the real noisé\(= 21)
GSNR =2 =3 =4 =5 | =6
MA MED K=1
[dB] Kopr (0.01,10%) | (0.09,10" | (0.08,10%) | (0.09,10" | (0.09,10%
5 48.0590| 54.1424 48.7218 49.1515 48.9696 48.6603.7301  48.5281 48.5753
10 | 50.5882| 54.6228 49.6216 50.4983 51.0340 50.70BD.5829 | 50.6469 50.4418
20 | 74.0827| 60.5868 58.5727 64.9127 67.0474 61.95B3.4167 | 61.5438 61.7357

30 | 128.4960 71.6625| 78.8215 97.675f¢ 101.03261.7831| 81.6493 81.181H 81.1762

Nevertheless, the application of ANNBFIS neuro-aystfor estimation of the myriad filter
parameter allows filtering performance improvemehthe ECG signals corrupted with the real
muscle noise in comparison to the myriad filterhwitonstantk value. The proposed filtering
method leads to satisfactory filtering quality fow as well as high GSNR level. Generally, the best
filtering results were obtained for= 6 if-then rulesyi, = 0.09 andl' .= 1.

6. CONCLUSIONS

In this paper the research on possibility of myfiéidrs application to suppress the EMG type
of noise in ECG signals was presented. To finduthlenown values of the linearity parameter for
myriad filters the Artificial Neural Network Basexh Fuzzy Inference System was applied. In the
proposed learning algorithm of the neuro-fuzzy elystparameters of fuzzy sets from antecedents
and consequents of fuzzy if-then rules were adjusieparately by means of the deterministic
procedure and the least squares method respectigherimentation shows the usefulness of the
myriad filtering of ECG signal corrupted with thensilated impulsive disturbances as well as the
real muscle noise, when the linearity parametesisnated using the ANNBFIS.
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