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1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that
is, we shall study the boundary-value problem

ẋ = JH ′(t, x)

x(0) = x(T )

with H(t, ·) a convex function of x, going to +∞ when ‖x‖ → ∞.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(x) is au-
tonomous. For the sake of simplicity, we shall also assume that it is C1.

We shall �rst consider the question of nontriviality, within the general frame-
work of (A∞, B∞)-subquadratic Hamiltonians. In the second subsection, we shall
look into the special case when H is (0, b∞)-subquadratic, and we shall try to
derive additional information.

The General Case: Nontriviality. We assume that H is (A∞, B∞)-sub-
quadratic at in�nity, for some constant symmetric matrices A∞ and B∞, with
B∞ −A∞ positive de�nite. Set:

γ : = smallest eigenvalue of B∞ −A∞ (1)

λ : = largest negative eigenvalue of J
d

dt
+A∞ . (2)
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Theorem 1 tells us that if λ+ γ < 0, the boundary-value problem:

ẋ = JH ′(x)
x(0) = x(T )

(3)

has at least one solution x, which is found by minimizing the dual action func-
tional:

ψ(u) =

∫ T

o

[
1

2

(
Λ−1o u, u

)
+N∗(−u)

]
dt (4)

on the range of Λ, which is a subspace R(Λ)2L with �nite codimension. Here

N(x) := H(x)− 1

2
(A∞x, x) (5)

is a convex function, and

N(x) ≤ 1

2
((B∞ −A∞)x, x) + c ∀x . (6)

Proposition 1. Assume H ′(0) = 0 and H(0) = 0. Set:

δ := lim inf
x→0

2N(x) ‖x‖−2 . (7)

If γ < −λ < δ, the solution u is non-zero:

x(t) 6= 0 ∀t . (8)

Proof. Condition (7) means that, for every δ′ > δ, there is some ε > 0 such that

‖x‖ ≤ ε⇒ N(x) ≤ δ′

2
‖x‖2 . (9)

It is an exercise in convex analysis, into which we shall not go, to show that
this implies that there is an η > 0 such that

f ‖x‖ ≤ η ⇒ N∗(y) ≤ 1

2δ′
‖y‖2 . (10)

Fig. 1. This is the caption of the �gure displaying a white eagle and a white horse on
a snow �eld
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Since u1 is a smooth function, we will have ‖hu1‖∞ ≤ η for h small enough,
and inequality (10) will hold, yielding thereby:

ψ(hu1) ≤
h2

2

1

λ
‖u1‖22 +

h2

2

1

δ′
‖u1‖2 . (11)

If we choose δ′ close enough to δ, the quantity
(
1
λ + 1

δ′

)
will be negative, and

we end up with
ψ(hu1) < 0 for h 6= 0 small . (12)

On the other hand, we check directly that ψ(0) = 0. This shows that 0 cannot
be a minimizer of ψ, not even a local one. So u 6= 0 and u 6= Λ−1o (0) = 0. ut

Corollary 1. Assume H is C2 and (a∞, b∞)-subquadratic at in�nity. Let ξ1,
. . . , ξN be the equilibria, that is, the solutions of H ′(ξ) = 0. Denote by ωk the
smallest eigenvalue of H ′′ (ξk), and set:

ω := Min {ω1, . . . , ωk} . (13)

If:
T

2π
b∞ < −E

[
− T

2π
a∞

]
<

T

2π
ω (14)

then minimization of ψ yields a non-constant T -periodic solution x.

We recall once more that by the integer part E[α] of α ∈ IR, we mean the
a ∈ ZZ such that a < α ≤ a + 1. For instance, if we take a∞ = 0, Corollary 2
tells us that x exists and is non-constant provided that:

T

2π
b∞ < 1 <

T

2π
(15)

or

T ∈
(
2π

ω
,
2π

b∞

)
. (16)

Proof. The spectrum of Λ is 2π
T ZZ + a∞. The largest negative eigenvalue λ is

given by 2π
T ko + a∞, where

2π

T
ko + a∞ < 0 ≤ 2π

T
(ko + 1) + a∞ . (17)

Hence:

ko = E

[
− T

2π
a∞

]
. (18)

The condition γ < −λ < δ now becomes:

b∞ − a∞ < −2π

T
ko − a∞ < ω − a∞ (19)

which is precisely condition (14). ut
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Lemma 1. Assume that H is C2 on IR2n\{0} and that H ′′(x) is non-degenerate
for any x 6= 0. Then any local minimizer x̃ of ψ has minimal period T .

Proof. We know that x̃, or x̃ + ξ for some constant ξ ∈ IR2n, is a T -periodic
solution of the Hamiltonian system:

ẋ = JH ′(x) . (20)

There is no loss of generality in taking ξ = 0. So ψ(x) ≥ ψ(x̃) for all x̃ in
some neighbourhood of x in W 1,2

(
IR/TZZ; IR2n

)
.

But this index is precisely the index iT (x̃) of the T -periodic solution x̃ over
the interval (0, T ), as de�ned in Sect. 2.6. So

iT (x̃) = 0 . (21)

Now if x̃ has a lower period, T/k say, we would have, by Corollary 31:

iT (x̃) = ikT/k(x̃) ≥ kiT/k(x̃) + k − 1 ≥ k − 1 ≥ 1 . (22)

This would contradict (21), and thus cannot happen. ut

Notes and Comments. The results in this section are a re�ned version of [1]; the
minimality result of Proposition 14 was the �rst of its kind.

To understand the nontriviality conditions, such as the one in formula (16),
one may think of a one-parameter family xT , T ∈

(
2πω−1, 2πb−1∞

)
of periodic

solutions, xT (0) = xT (T ), with xT going away to in�nity when T → 2πω−1,
which is the period of the linearized system at 0.

Table 1. This is the example table taken out of The TEXbook, p. 246

Year World population

8000 B.C. 5,000,000
50 A.D. 200,000,000

1650 A.D. 500,000,000
1945 A.D. 2,300,000,000
1980 A.D. 4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t, x) is (0, ε)-subquadratic at
in�nity for all ε > 0, and T -periodic in t

H(t, ·) is convex ∀t (23)

H(·, x) is T−periodic ∀x (24)

H(t, x) ≥ n (‖x‖) with n(s)s−1 →∞ as s→∞ (25)
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∀ε > 0 , ∃c : H(t, x) ≤ ε

2
‖x‖2 + c . (26)

Assume also that H is C2, and H ′′(t, x) is positive de�nite everywhere. Then
there is a sequence xk, k ∈ IN, of kT -periodic solutions of the system

ẋ = JH ′(t, x) (27)

such that, for every k ∈ IN, there is some po ∈ IN with:

p ≥ po ⇒ xpk 6= xk . (28)

ut

Example 1 (External forcing). Consider the system:

ẋ = JH ′(x) + f(t) (29)

where the Hamiltonian H is (0, b∞)-subquadratic, and the forcing term is a
distribution on the circle:

f =
d

dt
F + fo with F ∈ L2

(
IR/TZZ; IR2n

)
, (30)

where fo := T−1
∫ T
o
f(t)dt. For instance,

f(t) =
∑
k∈IN

δkξ , (31)

where δk is the Dirac mass at t = k and ξ ∈ IR2n is a constant, �ts the pre-
scription. This means that the system ẋ = JH ′(x) is being excited by a series
of identical shocks at interval T .

De�nition 1. Let A∞(t) and B∞(t) be symmetric operators in IR2n, depending
continuously on t ∈ [0, T ], such that A∞(t) ≤ B∞(t) for all t.

A Borelian function H : [0, T ] × IR2n → IR is called (A∞, B∞)-subquadratic
at in�nity if there exists a function N(t, x) such that:

H(t, x) =
1

2
(A∞(t)x, x) +N(t, x) (32)

∀t , N(t, x) is convex with respect to x (33)

N(t, x) ≥ n (‖x‖) with n(s)s−1 → +∞ as s→ +∞ (34)

∃c ∈ IR : H(t, x) ≤ 1

2
(B∞(t)x, x) + c ∀x . (35)

If A∞(t) = a∞I and B∞(t) = b∞I, with a∞ ≤ b∞ ∈ IR, we shall say that
H is (a∞, b∞)-subquadratic at in�nity. As an example, the function ‖x‖α, with
1 ≤ α < 2, is (0, ε)-subquadratic at in�nity for every ε > 0. Similarly, the
Hamiltonian

H(t, x) =
1

2
k ‖k‖2 + ‖x‖α (36)

is (k, k + ε)-subquadratic for every ε > 0. Note that, if k < 0, it is not convex.
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Notes and Comments. The �rst results on subharmonics were obtained by Ra-
binowitz in [5], who showed the existence of in�nitely many subharmonics both
in the subquadratic and superquadratic case, with suitable growth conditions
on H ′. Again the duality approach enabled Clarke and Ekeland in [2] to treat
the same problem in the convex-subquadratic case, with growth conditions on
H only.

Recently, Michalek and Tarantello (see [3] and [4]) have obtained lower bound
on the number of subharmonics of period kT , based on symmetry considerations
and on pinching estimates, as in Sect. 5.2 of this article.

2 Practical notes

Please note, that this Section is present in the ITIB template only.

2.1 National characters

National characters in your paper should not be used directly. Replace them by
universal macros. For example:

� \k{a} \k{e} \l{} \L{} for ¡, ¦, ª, �,
� \'C \'c ... for �, ¢, «, ó, . . .
� \.Z \.z for �, »,
� \"a \^e \`i \.I \o \'u \aa for ä, ê, ì, �, ø, ú, å,
� {\c c} {\u g} {\~n} {\H o} {\v r} {\ss} for ç, §, ñ, ®, °, ÿ.

2.2 Graphics

Include your graphics as eps (encapsulated Postscript, better) or ps (Postscript
without bounding box) �les and use latex (no pd�atex) for compilation. You may
use e.g. Corel Draw tools or (free) ImageMagick or Gimp to convert bitmaps to
eps. Try to avoid converting loosely compressed �les (e.g. JPEG).

Ensure, that your graphics look well in grayscale. You may include color
versions for electronic edition (add COLOR su�x to �lename).

Examples of various formatting options are presented in Figures 2 to 4.

Fig. 2. ITIB logo. It has a heart
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(a) First logo (b) Second logo

(c) Third logo

Fig. 3. ITIB logo on the left (a), right (b) and bottom (c)

Fig. 4. ITIB logo
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2.3 Tables

A few examples of table formatting are shown in Tables 2 to 4.

Table 2. Some values

Column 1 Column 2 Column 3 Column 4 Average

Phase I 5.99 6.06 9.32 5.88 6.81
Phase II 10.03 8.61 9.64 4.86 8.28
Phase III 8.95 8.91 6.75 3.75 7.09

Table 3. Some values

Column 1 Column 2 Column 3 Column 4 Average

Phase I 5.99 6.06 9.32 5.88 6.81
Phase II 10.03 8.61 9.64 4.86 8.28
Phase III 8.95 8.91 6.75 3.75 7.09

Table 4. Some values

Header
Columns 1�3 Column Average

1 2 3 4 Σ/n

Phase I
5.99

6.06 9.32 5.88 6.81
Phase II 12.65 9.64 4.86 8.28
Phase III 8.95 8.91 6.75 3.75 7.09

2.4 Bibliography

Please note, that (contrary to this example!), the bibliography items should be
provided in alphabetical order (see additionalInfo/authinst.pdf). To gener-
ate bibliography items you are advised to use one of two recommended Springer
Nature BiBTeX styles: spmpsci.bst or spphys.bst. In most cases, the content
of the author.bbl �le generated in the process can later be directly included in
the bibliography section of your paper.

Moreover:

� please provide doi identi�er, where possible,
� items that are not available in English should be accordingly marked by

placing �(in German)�, �(in Polish)�, etc. by the end of the bibitem entry.



Hamiltonian Mechanics 9

2.5 Math mode

The SVProc template provides a number of useful math commands. See Sect. 2.5
of the additionalInfo/authinst.pdf document.

2.6 Additional notes

� A number of publisher's guidelines for contributors (additionalInfo direc-
tory) regarding referencing, physical units, Greek letters etc. are included in
the Sections 2.5 to 2.7 of the authinst.pdf document.

� Web site of your institution is optional.
� Full names and surnames of all the authors should be provided.
� Your manuscript should have the even number of pages.
� Do not mix British and American English.

Acknowledgement. This acknowledgment is only in ITIB template.
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